BOUNDARY-VALUE PROBLEM IN THE DYNAMICAL
THEORY OF ELASTIC ANISOTROPIC MEDIA

V. 8. Budaev UDC 539.3-534.231.1

In the investigation of the propagation of oscillations in elastic anisotropic media one of the most im-
portant problems is the elucidation of the features of nonstationary wave fields, not found in isotropic media.
From this point of view great significance is attached to problems with concenfrated pulsed perturbations,
since in a number of cases the solutions to the given problems can be written in finite form in terms of ele-
mentary functions, which enables one to conduct a broad investigation of the solutions.

One of the problems, admitting a solution in finite form, is the Lamb problem for a half-plane. The
results presented below are a continuation of research [1, 2] on the properties of nonstationary wave fields
in anisotropic media. A closed solution to the Lamb problem for an elastic anisotropic half-plane is ob-
tained for the case when the equations of motion under conditions of plane deformation are characterized
by four elastic constants.

Examples of the calculation are given for the points on the boundary of the half-plane. The physical
consequences are discussed, and the roots of the characteristic equation are investigated in detail.

1. Statement of the Problem and the Solution

We shall consider an elastic anisotropic medium, the equations of motion of which under conditions
of plane deformation can be written in the form

0%u 2w 2u 0% 2w 2u 2w %w
CgE T g T =P Ggm T gy Tism =P 1.1

Here ¢y, ¢y, ¢35, and ¢, are coefficients, which are expressed in terms of the elastic constants of the medium
€1 = Gy, €3 = Q13 § Ggq) C3 = Qgqy €4 = Gy
and u and w are the components of the displacement along the x and z axes, and p is the density.

Let us consider the boundary-value problem for the half-plane z= 0, when the boundary conditions at
z =0 have the form

0,=—P8(x) 6(t), T.x=0 1.2)
with zero initial conditions. The stress-tensor components ¢, and T,y are written in the form
sz:(cg——cg)% —}—Q%, 1,x:c3<—g—:-+%:—) 1.3)
The functions 6 ) and 6 {) are Dirac delta functions.
This is the Lamb problem for an elastic anisotropic half-plane.

In [1] the present problem was discussed for the case when the coefficients in the equations satisfy
the conditions

y>a(d +8), vP>4f, O<a<il. O0<B<i
2B U +a) —v( +P)I>—[p—1] V¥ —dp .4
a=cglcy, f=cyley, v=1+af —c?/epe
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u, ! Here u,(8) are the roots of the characteristic equation, and 9 andg

| kz b are the integration variables in (1.5).
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Going from an integration over the imaginary ¢ exis to an integrstion along contours L, symmetri-
cal with respect to the real axis, along which £, =t, i.e,

Rel0z + po(0)z] = ¢, ImlBz + p,(8)s] =0

we obtain
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Applying the inverse Laplace transform (1.6) to (1.7) and separating the real part, we obtain

U=Uy + Uy W=W; | W, (1.8)
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384



1 (02) Q2 (B2) 902
m[ 7 @) at]

g (61) Q1 (61) 061
m[ o) )
[92(11 (62) 662]
FBs ot
The values of g, are solutions of the equations
t— 0,2 — p/(0)z =0, n=1,2 1.9

2. Roots of the Characteristic Equations

When the conditions (1.4) are satisfied, the roots of the characteristic equation for the system (1.1),
i.e., the functions uy (), for real g take only real or purely imaginary values, We shall relate the function
i (6) possessing certain properties to the first kind.

Conditions (1.4) are satisfied by a very many anisotropic media and by all isotropic media, so that
this kind of medium is very widespread. Of the first kind of medium minerals are especially characteristic,
e.g., rock salt, sylvite, feldspar, ice, beryl, sandstone, ete,

Anisotropic media for which conditions (1.4) are not satisfied are also very widespread in nature. In
distinction to the first kind of media the metals are most characteristic of these media. A significant frac-
tion of this type is comprised by metals with a cubic lattice and to a lesser degree metals with a hexagonal
close-packed structure, which refers to the majority of metals in the second, third, fourth, seventh, and
eighth groups of the periodic table. Typical répresentatives of the latter are beryllium, titanium, cobalt,
zine, rubidium, cadmium, molybdenum, zirconium, tellurium, etc.

The media for which conditions (1.4) are not satisfied are divided into two groups. In one group are
the media in which the x axis does not pass through any lacunae. We shall call them media of the second
kind. Media of the third kind are those in which the x axis passes through lacunae.

In the case of media of the second and third kind the functions uy (6) take complex values for real 4.
We shall show that uy,(6) can take complex values only for | 6| > b, b =}/ pjc;, and, consequently, Qn(€) takes
complex values only for |e|> cp, cp=1/b.

The points ¢y and cy divide the semiaxis 0 < pe? << o into three intervals
o < pe? < oo, ' 6y < pe?f <oy, 0 P§2< C3
We shall discuss the values of qn(£) in each interval separately.
According to (1.5) we have in the interval ¢, =pe?
M, >0, M,>0
Denoting ky =pe?—c; and ky=pe?—cs, we put the expression for T =M,2—M, in the form
T = ¢t + 20.2(cskey + c3ky) + (cihey — c3k,) 2
whence, considering that k;, ky >0, we obtain that in the given interval q,(¢) is purely imaginary, and, con-
sequently,
Ba(0) = igu(e) for [8]<a, a=VpTg
is real.
In the interval cg=<pe?< ¢; we have M, <0, so that q; is real and q, is purely imaginary, independent

of the sign of M. The function q,(¢) can take on complex values only in the interval 0 =<pe?< cg, and pp(9)
in the interval [g{> b, b>a.

It can be shown that if u,(9) is complex at some point 6=9y, then it is complex on the whole interval
61=6<». The left-most value of 9, we denote by g,. Crossing the point g= 6, is associated with a change
of sign of the radicant T in the radical vﬁif—MZ, which for a continuous function is associated with its going
to zero at the point ¢ =¢,, from which according to (1.5)

- m(Bx) = pa(By) (2.1)
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From (2.1) it follows that the points |9 | =g, are branch points of the radical VMILMz in the expres-
sion for uy(6). Two branch points of the radial vM,“—M, are real, and, since all branch points are situated
symmetrically with respect to the axes, two other branch points lie on the imaginary or real axes. Typical
dependences of u, (9) for media of the second kind are shown in Fig. 1a for the interval 09 < 6, For me-
dia of the third kind the function up(8) also takes complex values on the interval 6,<6 <. A representa-
tive of these media is copper. In Fig. 1b we show a typical configuration of the curves of up(8) on the real
6 axis for media of the form in question. In the present case the function up(6) approaches the point §= By
being real. For media of the third kind the points |9 | =6, are all branch points of the radical w/ﬁ I~ —M,.

The differences in the run of the curves of u,(g) cause differences in the run of the displacement
curves. When up(6) and 9, (p) are of the third kind, the x and z coordinate axes pass through lacunae. Near
lacuna boundaries the solution behaves the same as near wave fronts.

Besides the functions uy, (9) the relative values of o and Bin comparison with unity exert a great influ-
ence on the configuration of the displacement curves, in particular, for the points of the surface.

3. Sample Calculations

We present the dimensionless quantities u, (curve 1) and w, (curve 2) in Fig. 2 for zinc (medium of
the second kind, <1, f<1) and in Fig. 3 for a model MP medium (second kind, @>1, B<1). The quantities
u, and w, are related to the horizontal and vertical components of the displacement at the points of the
boundary

u(x’o t)"— *(t)' ll)(x, 01 t)=_1:"w* (i) (3'1)

Nest i

Along the abscissa in Figs. 2, 3 the values of €=x%/t are laid off in km/sec, We shall consider some
of the features of the displacement curves. A characteristic feature inherent in the w, curves in Figs. 2, 3
is the presence of the point £€_behind the second wave front, where w, =0. This is associated with the fact

that all three media are of the second kind.

In the interval ch< € < ¢ the curves of u, and w, for zinc do not qualitatively differ from analogous
curves for media of the second kind. This is associated with the fact that in both cases o<1, f <1. For
the material MP the quantity w, goes to zero at the point £=cg4 and at the point €=cp,, which is not possible
for media ofthe thirdkind. For MP (@ > 1) the curves onthe interval between the wave front (¢, < € < cy) havea
form fundamentally different from the corresponding first-kind curves. A peculiarityof the material MP is the
fact that the Rayleigh~wave velocity is 0.58 of the smallest wave velocity, i.e., for media of the kind in ques-
tion very low Rayleigh~wave velocities are possible. The indicated features of the surface displacement
curves are not possible for isotropic media. {In Fig. 1 curve 1 refers to uy(4) and curve 2 to u,(9). The
imaginary values of the functions up,(g) are indicated by the dashed line.]

The author is grateful to S. A, Khristianovich and E, I, Shemyakin for the attention they gave this work.
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