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T H E O R Y  OF E L A S T I C  A N I S O T R O P I C  M E D I A  
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In the investigation of the propagation of oscil lations in elastic anisotropic media one of the most  im- 
portant  p roblems is the elucidation of the features of nonstat ionary wave fields, not found in isotropic media. 
F r o m  this point of view great  significance is attached to problems with concentrated pulsed perturbations,  
since in a number of cases  the solutions to the given problems can be writ ten in finite fo rm in te rms  of ele-  
mentary  functions, which enables one to conduct a broad investigation of the solutions. 

One of the problems,  admitting a solution in finite form,  is the Lamb problem for a half-plane. The 
resul ts  presented below are a continuation of r e sea rch  [1, 2] on the proper t ies  of nonstat ionary wave fields 
in anisotropic media. A closed solution to the Lamb problem for an elast ic anisotropic half-plane is ob- 
tained for  the case  when the equations of motion under conditions of plane deformation are  charac te r ized  
by four elast ic constants.  

Examples of the calculation a re  given for the points on the boundary of the half-plane. The physical  
consequences a re  discussed,  and the roots  of the charac te r i s t ic  equation a re  investigated in detail. 

1.  S t a t e m e n t  of  t h e  P r o b l e m  a n d  t h e  S o l u t i o n  

We shall consider  an elast ic anisotropic medium, the equations of motion of which under conditions 
of plane deformation can be writ ten in the fo rm 

O~u 02w O~u O"u 02w 02u , O~w 02w 
cl  ~ § c~ ~ + ca o 7  = P ~ i ~ '  ca ~ + c,  ~ -t- c4 ~ = p ~/~ ( 1 . 1 )  

Here cl, c2, 03, and c 4 a re  coefficients, which are  expressed in t e rms  of the elast ic constants of the medium 

cl = a l l ,  c~ = a13 ~- a44 , c 8 = a44 , c 4 : aaa 

and u and w are  the components of the displacement along the x and z axes, and p is the density. 

Let us consider the boundary-value problem for  the half-plane z_> O, when the boundary conditions at 
z = 0 have the fo rm 

(Y~ = - - P S ( x )  5(t), % ~ = 0  (1.2) 

with ze ro  initial conditions. The s t r e s s - t e n s o r  components az and Tzx are  written in the fo rm 

Ou Ow Ou Ow 
~ = (c~ - ca) ~ + c, ~ ,  ~= = c. ( ~  + ~ )  (1.3) 

The functions 6 (x) and 6 (t) a re  Dirac delta functions. 

This is the Lamb problem for  an elastic anisotropic half-plane. 

In [1] the present  problem was d iscussed  for  the case when the coefficients in the equations sat isfy 
the conditions 

[2[~(i + a ) - - ? ( l  + [ ~ ) ] ~ - I [ ~ - l l V ? 9 - 4 c r  (1.4) 
(~ = C a / Cl, ~ : C 3 / C4, ~ = i ~- {~[~ - -  C2 2 / ClC 4 
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T h e  s o l u t i o n  o b t a i n e d  in  [1] i s  not  i m m e d i a t e l y  e x t e n d e d  to  

o t h e r  c a s e s .  T o  g e t  a s o l u t i o n ,  v a l i d  in  a l l  c a s e s ,  w e  u s e  a m o r e  
g e n e r a l  m e t h o d .  

T a k i n g  L a p l a c e  t r a n s f o r m s  in  t i m e ,  w e  w r i t e  t he  s o l u t i o n  t o  
t h e  p r o b l e m  in t h e  f o r m  

P dg U,~ (0) e~t e-COndO U = -- 4;~e----- ~ 
n = l  C--loo --ioo 

2 c-bioo {o~ 

P ~ S dg S Wn(O) egte-g'dO W - -  - -  4 ~ Z c  a 
V--iV --ioo 

~ n = 0 x + ~ . ( 0 )  z, ~ . ( 0 ) = i 0 q n ( ~ ) ,  8 = t / 0  

q~ (e) ----- (--Mx +- ] / - -~  -- M~) '/', n = l,, 2 
C2 ~ + Ca ( p E '  - -  C8) _if_ C4 (pE s - -  Cl) 

M1 = 2caca 

M ~  = ~(P~ - -  c~) ( ~ 2  _ c3) 
cat4 

0~ (0) a~ (0) O~ (0) 

W~ = - -  =' (o) e ,  (o) W~ = - o~ (o) (1.5) 
F (0) ' F CO) 

~z~(o) = o[~(o)  + ~(o)1 ,  ~ ( o )  = ~ ( o ) ~ ( o )  - o ~ 

~,~(o) = b~p-~id~O ~ + .~(0)~(0)1 - -  2O ~ 

?~(0) = 0 {b'p-:[d:~2~(O) -- ~,(0)] - -  2fl~(0) } 

F (o) = ~(o)r~(o) - -r 

~ ( 0 )  = - -  ox~(O), e~(o) = o/x~(O) 
%,, (0) = c 3 ~  (0) + c~ (0~-- aD __ O c ~  (0) 

Oc~p~ (0) - -  c~l~ ~ (0) + c~ (0 ~ -  b~) 

d2 p* [b~ + c~ p8 p , c~ = p a ~ = P 
= ~ \ " 7 -  t'  = ~7 %~' ~T 

H e r e  Pn(O)  a r e  t h e  r o o t s  of t he  c h a r a c t e r i s t i c  e q u a t i o n ,  and  0 a n d g  

a r e  t h e  i n t e g r a t i o n  v a r i a b l e s  in (1.5). 

T h e  f u n c t i o n s  u and w c a n  b e  w r i t t e n  in t he  f o r m  

~ + i o o  r 'S 'S = ~-~ E (g) egtdg, w = ~-~ (D (g) eg~dg (1.6) 
o--zoo 6--1c~ 

iv 2 

iao 2 

r = f -- loo ~ 1  

G o i n g  f r o m  an  i n t e g r a t i o n  o v e r  t h e  i m a g i n a r y  0 ~x i s  to an  i n t e g r a t i o n  a l o n g  c o n t o u r s  L n, s y m m e t r i -  

c a l  w i t h  r e s p e c t  to t h e  r e a l  a x i s ,  a l o n g  w h i c h  i n = t ,  i . e . ,  

Re[0x + ~,~(O)z] = t, Im[0x + ~(O)z] = 0 

w e  o b t a i n  

A p p l y i n g  t h e  

2 

Z ~ 

i n v e r s e  L a p l a c e  t r a n s f o r m  (1.6) to  (1.7) and s e p a r a t i n g  t h e  r e a l  p a r t ,  w e  o b t a i n  

(1.7) 

/2 = t~ 1 -~- Uz, W = W 1 Jr- W e 

P �9 FOI=~ (01) 0013 
u ~ =  ~-~ ,m L ~io-~ - ~ ]  

(i.8) 

3 8 4  



P . "I'll (02) ~ (02) 002] 
u s = - ~ l m  L. ~ ~-3 

P T l-a2(O1) Ql(01) 001" 1 

t , .  ro2a~ (02) oo31 
w2 = - ~-c~ *mL'Ti0 u ~ j  

The values of On are  solutions of the equations 

t --  0.x -- 9~'(0.)z = 0, n = t,2 (1.9) 

2. R o o t s  o f  t h e  C h a r a c t e r i s t i c  E q u a t i o n s  

When the conditions (1.4) a re  satisfied, the roots of the charac te r i s t i c  equation for  the sys tem (1.1), 
i.e.,  the functions Pn(0), fo r  real  0 take only real  or  purely imaginary values. We shall relate  the function 
#n(0) possess ing cer ta in  proper t ies  to the f i rs t  kind. 

Conditions (1.4) a re  satisfied by a very  many anisotropic media and by all isotropic media, so that 
this kind of medium is ve ry  widespread.  Of the f i r s t  kind of medium minera ls  a re  especial ly charac ter is t ic ,  
e.g., rock salt, sylvite, feldspar,  ice, beryl,  sandstone, etc. 

Anisotropic media for  which conditions (1.4) are  not satisfied a re  also ve ry  widespread in nature.  In 
distinction to the f i rs  t kind of media the metals  are  mos t  charac te r i s t ic  of these media. A significant f r ac -  
tion of this type is c o m p r i s e d b y m e t a l s  with a cubic lat t ice and to a l e s se r  degree metals  with a hexagonal 
c l o s e - p a c k e d  s t ructure ,  which r e fe r s  to the major i ty  of metals  in the second, third, fourth, seventh, and 
eighth groups of the periodic table. Typical r ep resen ta t ives  of the la t ter  are  beryll ium, titanium, cobalt, 
zinc, rubidium, cadmium, molybdenum, zirconium, tellurium, etc. 

The media for  which conditions (1.4) a r e  not satisfied are  divided into two groups.  In one group a re  
the media in which the x axis does not pass  through any lacunae. We shall call them media of the second 
kind. Media of the third kind are  those in which the x axis passes  through lacunae. 

In the case  of media of the second and third kind the functions Pn(0) take complex values for  real  0. 
We shall show that ~n(0) can take complex  values only for  J 0 [ > b, b = ~P/-~a, and, consequently, qn(~) takes 
complex values only for  It I > Cb, Cb = 1/b. 

The points c 1 and c 3 divide the semiaxis 0 ~ pe ~ < co into three intervals 

c l ~ p e  2 ~  c o , ' c 3 ~ p e  ~ c x ,  0 ~ p 8 2 ~ c s  

We shall d iscuss  the values of qn(e) in each interval  separately .  

According to (1.5) we have in the interval c I <_ p e 2 

M I ~ 0 ,  M 2 ~ 0  

Denoting k 1 = p ~ 2 _  cl and k 2 =pe2-c3 ,  we put the expression for  T=M12--M2 in the fo rm 

T ~ c~ 4 Jr- 2%~(c4kl -b c8k2) q- (c4kl - -  c3k2) ~ 

whence, considering that kl, k 2 > 0, we obtain that in the given interval  qn(e) is purely  imaginary,  and, con- 
sequently, 

~t n (0) = iOqn(e) for I 0 ] < a, a = V"P / Cl 

is real .  

In the interval c3_< p c 2 (  c 1 we have M 2 < 0, so that ql is rea l  and q2 is purely imaginary,  independent 
of the sign of M 1. The function qn(e) can take on complex values only in the interval  0~pE2( e3, and #n(0) 
in the interval [0 t> b, b > a .  

It can be shown that if Pn(0) is complex at some point 0=01, then it is complex on the whole interval 
01 -< 0 ~ ~.  The le f t -most  value of 01 we denote by 0..  Crossing the point 0 = 0. is associated with a change 
of sign of the radicant  T in the radical  1-r which for  a continuous function is associated with its going 
to zero  at the point 0 = 0 , ,  f rom which according to (1.5) 

~t l (0 , )  = ~t$(0,)  (2.1) 
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F r o m  (2.1) it follows that the points l0 I = 0, a r e  b ranch  points  of the rad ica l  ~ 2  in the e x p r e s -  
sion fo r  Pn(0).  Two branch  points of the rad ia l  ~ a r e  rea l ,  and, s ince all b ranch  points a r e  s i tuated 
s y m m e t r i c a l l y  with r e s p e c t  to the axes ,  two other b ranch  points l ie  on the imaginary  or  r e a l  axes.  Typica l  
dependences of #n(0)  fo r  med ia  of the second kind a r e  shown in Fig.  l a  fo r  the in terva l  0-<0 ~ 0, .  F o r  m e -  
dia of the third kind the function Pn(0) a lso  takes  complex  values on the in terva l  0 ,~0  ~ o0. A r e p r e s e n t a -  
t ive  of these med ia  is copper .  In Fig.  l b  we show a typical  configurat ion of the cu rves  of pn(0) on the r ea l  
0 axis for  med ia  of the f o r m  in question.  In the presen t  case  the function Pn(0) approaches  the point 0 = 0, ,  
being rea l .  F o r  med ia  of the th i rd  kind the points 101 = 0, a r e  all  b ranch  points of the rad ica l  

The differcmces in the run of the curves  of #n(0)  cause  d i f fe rences  in the  run of the d i sp lacement  
cu rves .  When Pn(0) and 0n(P) a r e  of the third kind, the x and z coordinate  axes  pas s  through lacunae.  Near  
lacuna boundar ies  the solution behaves  the s a m e  as  nea r  wave f ronts .  

Bes ides  the functions #n(0)  the re la t ive  va lues  of c~ and flin compar i son  with unity exer t  a g r ea t  influ- 
ence on the  configurat ion of the d i sp lacement  curves ,  in pa r t i cu la r ,  for  the points of the su r face .  

3 .  S a m p l e  C a l c u l a t i o n s  

We p re sen t  the d imens ion less  quanti t ies u ,  (curve 1) and w, (curve 2) in Fig. 2 for  zinc (medium of 
the second kind, ~ ~ 1, fi ~ 1) and in Fig.  3 for  a model  MP medium (second kind, ~ > 1, fir 1). The quanti t ies  
u ,  and w, a r e  re la ted  to the hor izonta l  and ve r t i c a l  components  of the d isp lacement  at the points of the 
boundary  

u (z, O, t) = -~--~t u* "r n-~t u~* 

Along the abs c i s s a  in F igs .  2, 3 the values  of e = x / t  a r e  laid off in k m / s e c .  We shall  cons ider  some 
of the fea tu res  of the d i sp lacement  curves .  A cha rac t e r i s t i c  f ea tu re  inherent in the w, cu rves  in Figs .  2, 3 
i s  the p r e s e n c e  of the point ~,  behind the second wave front ,  where  w,  = 0. This  is a ssoc ia ted  with the fact  
that all  t h r ee  media  a r e  of the second kind. 

In the in terval  Cb ~ e ~ c a the cu rves  of u ,  and w, for  zinc do not qual i ta t ively differ  f r o m  analogous 
cu rves  f o r  med ia  of the second kind. This  is a ssoc ia ted  with the fact  that in both cases  o~ r 1, fl ~ 1. F o r  
the m a t e r i a l  MP the quantity w,  goes  to ze ro  at the point e = Ca and at the point ~ = Cb, which is not poss ib le  
for  media  of the th i rdkind .  F o r  MP (c~ > 1) the cu rves  on the in te rva l  between the wave front  (c a < ~ < c b) have a 
f o r m  fundamental ly  different  f rom the cor responding  f i r s t -k ind  cu rves .  A pecu l ia r i ty  of the ma te r i a l  MP is the 
fac t  that the Rayle igh-wave veloci ty  is 0.58 of the sma l l e s t  wave velocity,  i .e.,  f o r  media  of the kind in ques -  
t ion v e r y  low Rayle igh-wave ve loc i t ies  a r e  poss ib le .  The indicated f ea tu res  of the su r face  d isp lacement  
curves  a r e  not poss ib le  fo r  i sot ropic  media .  [In Fig. 1 cu rve  1 r e f e r s  to p i (0)  and curve  2 to #2(0). The 
i m a g i n a r y  values  of the functions Pn(0) a r e  indicated by the dashed line.] 

The author  is g ra te fu l  to S. A. Khr is t ianovich and E. I. Shemyakin for  the attention they gave  this work.  
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